skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ottley, Alvitta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 31, 2026
  2. Free, publicly-accessible full text available April 25, 2026
  3. Free, publicly-accessible full text available April 25, 2026
  4. Abstract Research shows that user traits can modulate the use of visualization systems and have a measurable influence on users' accuracy, speed, and attention when performing visual analysis. This highlights the importance of user‐adaptive visualization that can modify themselves to the characteristics and preferences of the user. However, there are very few such visualization systems, as creating them requires broad knowledge from various sub‐domains of the visualization community. A user‐adaptive system must consider which user traits they adapt to, their adaptation logic and the types of interventions they support. In this STAR, we survey a broad space of existing literature and consolidate them to structure the process of creating user‐adaptive visualizations into five components: Capture ⒶInputfrom the user and any relevant peripheral information. Perform computational ⒷUser Modellingwith this input to construct a ⒸUser Representation. Employ ⒹAdaptation Assignmentlogic to identify when and how to introduce ⒺInterventions. Our novel taxonomy provides a road map for work in this area, describing the rich space of current approaches and highlighting open areas for future work. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Abstract The increasing integration of Visual Language Models (VLMs) into visualization systems demands a comprehensive understanding of their visual interpretation capabilities and constraints. While existing research has examined individual models, systematic comparisons of VLMs' visualization literacy remain unexplored. We bridge this gap through a rigorous, first‐of‐its‐kind evaluation of four leading VLMs (GPT‐4, Claude, Gemini, and Llama) using standardized assessments: the Visualization Literacy Assessment Test (VLAT) and Critical Thinking Assessment for Literacy in Visualizations (CALVI). Our methodology uniquely combines randomized trials with structured prompting techniques to control for order effects and response variability ‐ a critical consideration overlooked in many VLM evaluations. Our analysis reveals that while specific models demonstrate competence in basic chart interpretation (Claude achieving 67.9% accuracy on VLAT), all models exhibit substantial difficulties in identifying misleading visualization elements (maximum 30.0% accuracy on CALVI). We uncover distinct performance patterns: strong capabilities in interpreting conventional charts like line charts (76‐96% accuracy) and detecting hierarchical structures (80‐100% accuracy), but consistent difficulties with data‐dense visualizations involving multiple encodings (bubble charts: 18.6‐61.4%) and anomaly detection (25‐30% accuracy). Significantly, we observe distinct uncertainty management behavior across models, with Gemini displaying heightened caution (22.5% question omission) compared to others (7‐8%). These findings provide crucial insights for the visualization community by establishing reliable VLM evaluation benchmarks, identifying areas where current models fall short, and highlighting the need for targeted improvements in VLM architectures for visualization tasks. To promote reproducibility, encourage further research, and facilitate benchmarking of future VLMs, our complete evaluation framework, including code, prompts, and analysis scripts, is available athttps://github.com/washuvis/VisLit‐VLM‐Eval. 
    more » « less
  6. Abstract The increasing integration of artificial intelligence (AI) in visual analytics (VA) tools raises vital questions about the behavior of users, their trust, and the potential of induced biases when provided with guidance during data exploration. We present an experiment where participants engaged in a visual data exploration task while receiving intelligent suggestions supplemented with four different transparency levels. We also modulated the difficulty of the task (easy or hard) to simulate a more tedious scenario for the analyst. Our results indicate that participants were more inclined to accept suggestions when completing a more difficult task despite theai's lower suggestion accuracy. Moreover, the levels of transparency tested in this study did not significantly affect suggestion usage or subjective trust ratings of the participants. Additionally, we observed that participants who utilized suggestions throughout the task explored a greater quantity and diversity of data points. We discuss these findings and the implications of this research for improving the design and effectiveness ofai‐guidedvatools. 
    more » « less